soal cerita SPLTV
SOAL CERITA SPLTV DALAM KEHIDUPAN SEHARI HARI
1. Diketahui sebuah bilangan tiga angka. Jumlah angka-angka tersebut 11. Dua kali angka pertama ditambah angka kedua sama dengan angka ketiga. Angka pertama ditambah angka kedua dikurangi angka ketiga. Tentukan ketiga bilangan tersebut.
Penyelesaian:
Misalkan: x = bilangan pertama, y = bilangan kedua, z = bilangan ketiga
Persamaan matematis:
a + b + c = 11
2a + b = c ⇒ 2a + b – c = 0
a + b – c = – 1
Diperoleh SPLTV yakni:
a + b + c = 11 . . . . pers (1)
2a + b – c = 0 . . . . pers (2)
a + b – c = – 1 . . . pers (3)
Langkah I
Eliminasi c dengan menggunakan persamaan 1 dan 2 maka: pers (4)
a + b + c
=
11
2a + b – c
=
0
+
3a + 2b
=
11
Langkah II
Eliminasi b dan c dengan menggunakan persamaan 2 dan 3, maka: pers (5)
2a + b – c
=
0
a + b – c
=
−1
−
a
=
1
Langkah III
Subtitusikan nilai a ke persamaan 4 di langkah 1, maka:
3a + 2b = 11
3(1) + 2b = 11
3 + 2b = 11
2b = 8
b = 4
Langkah IV
Subtitusikan nilai a dan b ke persamaan 1, 2 atau 3, maka:
a + b + c = 11
1 + 4 + c = 11
5 + c = 11
c = 6
Jadi ketiga bilangan tersebut secara berurutan adalah 1, 4 dan 6.
2. Eka, Dwi, dan Tri adalah 3 bersaudara. Menurut mereka, jumlah usia mereka adalah 28 tahun. Jumlah usia Eka yang ditambah 2 tahun dan usia Dwi yang ditambah 3 tahun sama dengan 5 tahun ditambah tiga kali usia Tri. Dua kali usia Eka dikurangi usia Dwi kemudian ditambah usia Tri sama dengan 13 tahun. Tentukan urutan usia mereka dari yang paling muda!
Penyelesaian:
Misal usia Eka = x, Dwi = y, dan Tri = z
Persamaan matematis:
x + y + z = 28
(x + 2) + (y + 3) = 5 + 3z => x + y – 3z = 0
2x – y + z = 13
Diperoleh SPLTV yakni:
x + y + z = 28 . . . . pers (1)
x + y – 3z = 0 . . . . pers (2)
2x – y + z = 13 . . . pers (3)
Langkah I
Eliminasi x dan y dengan menggunakan persamaan 1 dan 2 yakni pers (3) :
x + y + z
=
28
x + y – 3z
=
0
−
4 z
=
28
z
=
7
Langkah II
Eliminiasi y dengan menggunakan persamaan 2 dan 3 pers (4) yakni:
x + y – 3z = 0
2x – y + z = 13
______________ +
3x – 2z = 13 . . . . pers (4)
Langkah III
Substitusi nilai z ke persamaan 4, maka:
3x – 2z = 13
3x – 2(7) = 13
3x – 14 = 13
3x = 27
x = 9
Langkah IV
Substitusi nilai x dan z ke persamaan 1, maka:
x + y + z = 28
9 + y + 7 = 28
y + 16 = 28
y = 12
Jadi urutan usia dari usia yang paling muda yaitu 7 tahun, 9 tahun, dan 12 tahun.
3. Bentuk kuadrat px2 + qx + r mempunyai nilai 1 untuk x = 0, mempunyai nilai 6 untuk x = 1 dan mempunyai nilai 2 untuk x = −1. Carilah nilai p, q, dan r.
Penyelesaian:
Fungsi kuadrat dalam x dituliskan sebagai berikut.
f(x) = px2 + qx + r
■ Untuk nilai x = 0 maka f(x) = 1 maka:
f(0) = p(0)2 + q(0) + r
1 = r
■ Untuk nilai x = 1 maka f(x) = 6 maka:
f(1) = p(1)2 + q(1) + r
6 = p + q + r
Masukkan nilai r = 1 ke persamaan 6 = p + q = r sehingga diperoleh:
⇒ 6 = p + q + r
⇒ 6 = p + q + 1
⇒ p + q = 5
⇒ p = 5 – q
■ Untuk nilai x = −1 maka f(x) = 2 maka:
f(0) = p(−1)2 + q(−1) + r
2 = p – q + r
Subtitusikan persamaan nilai r = 1 dan persamaan p = 5 – q ke persamaan 2 = p – q + r sehingga diperoleh:
⇒ 2 = p – q + r
⇒ 2 = (5 – q) – q + 1
⇒ 2 = 6 – 2q
⇒ 2q = 6 – 2
⇒ 2q = 4
⇒ q = 2
Terakhir, subtitusikan nilai q = 2 dan nilai r = 1 ke persamaan 2 = p – q + r sehingga kita peroleh nilai p sebagai berikut.
⇒ 2 = p – q + r
⇒ 2 = p – 2 + 1
⇒ 2 = p – 1
⇒ p = 2 + 1
⇒ p = 3
Jadi, nilai p, q, dan r berturut-turut adalah 3, 2, dan 1.
4. Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
● Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z
=
33.000
|× 2|
→
2x + 6y + 4z
=
66.000
2x + y + z
=
23.500
|× 1|
→
2x + y + z
=
23.500
−
5y + 3z
=
42.500
● Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z
=
33.000
x + 2y + 3z
=
36.500
−
y – z
=
−3.500
y
=
z – 3.500
Subsitusikan y = z – 3.500 ke persamaan 5y + 3z = 42.500 sehingga diperoleh:
⇒ 5y + 3z = 42.500
⇒ 5(z – 3.500) + 3z = 42.500
⇒ 5z – 17.500 + 3z = 42.500
⇒ 8z – 17.500 = 42.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 60.000
⇒ z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.
⇒ y = z – 3.500
⇒ y = 7.500 – 3.500
⇒ y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
⇒ x + 3y + 2z = 33.000
⇒ x + 3(4.000) + 2(7.500) = 33.000
⇒ x + 12.000 + 15.000 = 33.000
⇒ x + 27.000 = 33.000
⇒ x = 33.000 – 27.000
⇒ x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.
5. Keliling sebuah persegi panjang sama dengan 44 cm. Jika lebarnya 6 cm lebih pendek dari panjangnya, carilah panjang dan lebar dari persegi panjang tersebut.
Jawab:
■ Misalkan panjang dari persegi panjang itu sama dengan x cm dan lebarnya y cm. Model matematika yang sesuai dengan persolan di atas adalah sebagai berikut.
2(panjang + lebar) = keliling persegi panjang
⇒ 2x + 2y = 44
⇒ x + y = 22
Lebar 6 cm lebih pendek dari panjang, maka:
⇒ y = x – 6
■ Dengan demikian, kita peroleh model matematika berbentuk SPLDV berikut.
x + y = 22
y = x – 6
■ Dengan menggunakan metode subtitusi, maka penyelesaian dari SPLDV tersebut adalah sebagai berikut.
Pertama, untuk menentukan nilai x, subtitusikan persamaan y = x – 6 ke persamaan x + y = 22 sehingga diperoleh:
⇒ x + y = 22
⇒ x + (x – 6) = 22
⇒ 2x – 6 = 22
⇒ 2x = 22 + 6
⇒ 2x = 28
⇒ x = 14
Kedua, untuk menentukan nilai y, subtitusikan nilai x = 14 ke persamaan y = x – 6 sehingga diperoleh:
⇒ y = x – 6
⇒ y = 14 – 6
⇒ y = 8
Jadi, panjang persegi panjang itu adalah 14 cm dan lebarnya adalah 8 cm.
Darftar Pusaka :
https://blogmipa-matematika.blogspot.com/2017/12/soal-cerita-SPLTV.html?m=0
https://mafia.mafiaol.com/2020/10/contoh-soal-cerita-persamaan-linear-tiga-variabel-dan-penyelesaiannya.html?m=1
Komentar
Posting Komentar