Persamaan Dan Pertidaksamaan Nilai Mutlak

  Pengertian Persamaan Nilai Mutlak

Secara geometri, nilai mutlak suatu bilangan adalah jarak antara bilangan itu dengan bilangan nol pada garis bilangan real. Dengan demikian, tidak mungkin nilai mutlak suatu bilangan bernilai negatif, tetapi mungkin saja bernilai nol. 

Simbol untuk nilai mutlak yaitu dua garis lurus ( | | ), sekitarnya jumlah atau ekspresi yang mengindikasikan nilai mutlak.

NotasiKeterangan
| 4 | = 4nilai absolut dari 4 adalah 4
| -6 | = 6nilai absolut dari negatif 6 adalah 6
| -8 – x |nilai absolut dari negatif 8 dikurangi x
– | x |nilai negatif dari nilai absolut dari x
Sifat-Sifat Nilai Mutlak

Persamaan Nilai Mutlak


 
Pertidaksamaan Nilai Mutlak


Contoh Soal :

1. Tentukan himpunan penyelesaian dari |2x - 7| = 3

Jawab :

Berdasarkan sifat 2 :

|2x - 7| = 3  ⇔  2x - 7 = 3  atau  2x - 7 = -3
|2x - 7| = 3  ⇔  2x = 10  atau  2x = 4
|2x - 7| = 3  ⇔  x = 5  atau  x = 2

Jadi, HP = {2, 5}.

2. Tentukan HP dari |2x - 1| = |x + 4|

Jawab :
Berdasarkan sifat 2 :
|2x - 1| = |x + 4|

⇔  2x - 1 = x + 4  atau  2x - 1 = -(x + 4)
⇔  x = 5  atau  3x = -3
⇔  x = 5  atau  x = -1

Jadi, HP = {-1, 5}.

3.Tentukan himpunan penyelesaian dari |2x - 1| < 7

Jawab :
Berdasarkan sifat b :
|2x - 1| < 7  ⇔  -7 < 2x - 1 < 7
|2x - 1| < 7  ⇔  -6 < 2x < 8
|2x - 1| < 7  ⇔  -3 < x < 4

Jadi, HP = {-3 < x < 4}.

4. Tentukan himpunan penyelesaian dari |4x + 2| ≥ 6

Jawab :

Berdasarkan sifat c :
|4x + 2| ≥ 6  ⇔  4x + 2 ≤ -6  atau  4x + 2 ≥ 6
|4x + 2| ≥ 6  ⇔  4x ≤ -8  atau  4x ≥ 4
|4x + 2| ≥ 6  ⇔  x ≤ -2  atau  x ≥ 1

Jadi, HP = {x ≤ -2  atau  x ≥ 1}.

5.Tentukan penyelesaian dari |3x - 2| ≥ |2x + 7|


Jawab :
Pertaksamaan yang kedua ruasnya memuat tanda mutlak dapat diselesaikan dengan menguadratkan kedua ruas atau dengan menggunakan sifat :
|a| ≥ |b| ⇔ (a + b)(a - b) ≥ 0

Berdasarkan sifat diatas,
|3x - 2| ≥ |2x + 7|
⇔ ((3x - 2) + (2x + 7)) ((3x - 2) - (2x + 7) ≥ 0
⇔ (5x + 5) (x - 9) ≥ 0

Pembuat nol :
x = -1 atau x = 9

Dengan uji garis bilangan diperoleh

HP = {x ≤ -1  atau  x ≥ 9} 

6. Nilai x yang memenuhi persamaan |x - 2| = 2x + 1 adalah...


Jawab :
|x - 2| = x - 2       jika  x ≥ 2
|x - 2| = -(x - 2)   jika  x < 2

Untuk x ≥ 2
|x - 2| = 2x + 1  ⇔  x - 2 = 2x + 1
|x - 2| = 2x + 1  ⇔  -x = 3
|x - 2| = 2x + 1  ⇔  x = -3
Karena x ≥ 2, maka x = -3 tidak memenuhi

Untuk x < 2
|x - 2| = 2x + 1  ⇔  -(x - 2) = 2x + 1
|x - 2| = 2x + 1  ⇔  -x + 2 = 2x + 1
|x - 2| = 2x + 1  ⇔  -3x = -1
|x - 2| = 2x + 1  ⇔  x = 1/3
Karena x < 2, maka x = 1/3 memenuhi.

Jadi, nilai x yang memenuhi persamaan diatas adalah x = 1/3

7. Nyatakan |x - 4| + |2x + 6| tanpa menggunakan simbol nilai mutlak

Jawab :
|x - 4| = x - 4 jika x ≥ 4
|x - 4| = -(x - 4) jika x < 4

|2x + 6| = 2x + 6 jika x ≥ -3
|2x + 6| = -(2x + 6) jika x < -3

Jika interval-interval diatas digambarkan pada garis bilangan akan diperoleh


Untuk x < -3
|x - 4| + |2x + 6| = -(x - 4) - (2x + 6)
|x - 4| + |2x + 6| = -x + 4 - 2x - 6
|x - 4| + |2x + 6| = -3x - 2

Untuk -3 ≤ x < 4
|x - 4| + |2x + 6| = -(x - 4) + (2x + 6)
|x - 4| + |2x + 6| = -x + 4 + 2x + 6
|x - 4| + |2x + 6| = x + 10

Untuk x ≥ 4
|x - 4| + |2x + 6| = (x - 4) + (2x + 6)
|x - 4| + |2x + 6| = x - 4 + 2x + 6
|x - 4| + |2x + 6| = 3x + 2

Dari uraian diatas, kita simpulkan
|x4|+|2x+6|={3x2jikax<3x+10jika3x<43x+2jikax4

8. Tentukan HP dari |x + 1| > 2x - 4

Jawab :
|x + 1| = x + 1       jika  x ≥ -1
|x + 1| = -(x + 1)   jika  x < -1

Untuk x ≥ -1
|x + 1| > 2x - 4  ⇔  x + 1 > 2x - 4
|x + 1| > 2x - 4  ⇔  -x > -5
|x + 1| > 2x - 4  ⇔  x < 5
Irisan dari x ≥ -1 dan x < 5 adalah -1 ≤ x < 5   

Untuk x < -1
|x + 1| > 2x - 4  ⇔  -(x + 1) > 2x - 4
|x + 1| > 2x - 4  ⇔  -x - 1 > 2x - 4
|x + 1| > 2x - 4  ⇔  -3x > -3
|x + 1| > 2x - 4  ⇔  x < 1
Irisan dari x < -1 dan x < 1 adalah x < -1   

Jadi, HP = {x < -1  atau  -1 ≤ x < 5}
Jadi, HP = {x < 5}

Berikut adalah rangkuman Materi Persamaan Dan Pertidaksanaan Nilai Mutlak

Komentar

Postingan populer dari blog ini

KOORDINAT KUTUB DAN KOORDINAT KARTESIUS

IDENTITAS TRIGONOMETRI

SUDUT SUDUT BERELASI